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Abstract

Techniques for high throughput determinations of interactomes, together with 
high resolution protein collocalizations maps within organelles and through 
membranes will soon create a vast resource. With these data, biological 
descriptions, akin to the high dimensional phase spaces familiar to physicists, will 
become possible. These descriptions will capture sufficient information to make 
possible realistic, system-level models of cells. The descriptions and the 
computational models they enable will require powerful computing techniques. 
This report is offered as a call to the computational biology community to begin 
thinking at this scale and as a challenge to develop the required algorithms and 
codes to make use of the new data.
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Introduction

A detailed understanding of cells as systems is critical because the emergent 
phenomena of life is not disclosed by a simpler understanding of isolated biomolecules. 
Achieving these insights and mechanistic understandings will enable huge progress in the 
treatment of disease, alternative energy production, materials design, synthetic 
biochemistry, nanotechnology, and chem-bio warfare agent detection. However, we are 
still a long way from that goal.

We have only very incomplete answers to the problems that plague us. Why are 
there drastic differences between mice and humans, despite the overwhelming similarity 
in mouse and human genes? Why don’t drugs that work on the same target in mice work 
in humans? Is drug toxicity due to non-specific drug interactions or naïve assumptions 
regarding the role of the target protein? Does the network of interacting molecules 
suggest a general target for cancer therapeutics? 

These are not small holes in our knowledge; they reflect the need to undertake a 
vast program of research aimed at a fuller understanding of cells. We will measure our 
success in that endeavor by our ability to predict cellular responses across a broad range 
of conditions: for example, from normal to abnormal gene doses due to aneuploidy and 
chromosomal rearrangements and from normal physiological conditions to extreme 
environmental exposures and cytotoxic therapies. The required models and simulations 
are not yet achievable, in part because we lack the fundamental knowledge about which 
proteins collocate and interact with each other, but also because we lack the appropriate 
conceptual frameworks to deal with the complexity offered by whole cell mechanisms.

If we barely understand cells, how much further are we from understanding other 
areas of interest regarding the manipulation of life, from humans down to cells, and 
further down to protein catalysts? Human performance enhancement, battling the effects 
of aging, understanding cognition at a molecular level, metabolic engineering of cells for 
more efficient production of fuels, and protein engineering of novel catalysts are all 
limited by our current understanding of biology. 

Unfortunately, merely extending the current level of protein annotations to the 
entire set of translated proteins is unlikely to break barriers on its own. We will still lack 
understanding of how these proteins interact to regulate biological processes and how the 
interplay of proteins and the morphology of organelles, cells, tissues, and organs 
ultimately enable life. Our ignorance can be lethal; engineering a protein to enhance 
performance within the cell for a particular reaction might ultimately be deleterious due 
to unknown regulatory functions provided by protein interactions. However, one can 
imagine a time when our understanding will greatly lower the risks. Stretching our 
imaginations even further, it is possible that whole biochemical industries that would 
otherwise rely on intact cells, might use smaller biomolecular machines if we can learn 
how to provide more stable and efficient cell-free processes. The excitement and power 
of bioengineering in its general sense seems palpable, but we must begin by taking small, 
achievable steps toward that new understanding of biology at a systems level.
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Here, we present a review of the literature motivating the necessity of a systems 
approach. Although high-throughput genomics and proteomics approaches have made 
important progress, we show why further investigation into the role of proteins is 
required. We discuss important limitations based on the available data and computational 
methods. We discuss recent advances in experimental techniques that allow for an 
unprecedented amount of data to be collected regarding the complex roles of proteins in 
cellular processes. We discuss how the data can be used to:

1. Predict function for uncharacterized proteins
2. Identify new functions for known proteins
3. Group molecules into the organized machines responsible for cellular 

processes
4. Identify novel targets for disease and bioengineering
5. Understand molecular recognition and improve predictive methods
6. Facilitate protein engineering and cellular engineering.

We discuss the computational tools that will be required. Finally, we discuss the idea of a 
biological phase space and methods that can identify manifolds in this space in order to 
reduce the complexity of computational methods and enable new advances in 
bioengineering and the treatment of disease.

Obtaining a New Level of Understanding

The foundation of biochemistry and molecular biology was built by investigating 
protein functions in experiments involving only one or a few proteins at a time. This 
approach has identified seemingly straightforward pathways describing the influence of 
metabolic and signaling functions on biological processes. However, it has become 
increasingly clear that proteins function in complex networks and not in isolation.

Indeed, the investigation of isolated proteins has led to the identification of 
function for only a small fraction of the proteins predicted to exist in the human body. 
Additionally, it has become apparent that many proteins play multiple roles in distinct 
biological processes. In addition to the numerous signaling and nucleic acid binding 
proteins that have multiple functions and interact with multiple classes of partners, 
metabolic enzymes have also been shown to play additional roles [1, 2]. A significant 
number of proteins are found to be localized to multiple subcellular compartments; >28% 
are in two locations and >8% are in three locations according to one account [3] and this 
is likely an underestimate limited by known observations. 

The complexity surrounding protein function, along with the idea of “molecular 
machines” responsible for biological processes, has led several researchers to describe 
genomics and proteomics as the discovery of a list of parts [4-6]. Beyond the parts, 
uncovering the schematic detailing how these proteins work together in biological 
processes is paramount for future investigations into the mechanism and treatment of 
disease, gene therapy, evolution, and metabolic engineering.

As a first step in this process, researchers have recently begun to tackle the notion 
of the interactome - the complete list of physical interactions mediated by all proteins of 
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an organism [7]. This understanding of proteins as part of a larger set of molecular 
machines and the communications between them promises a new biochemical framework 
for understanding processes as an integrated activity of highly interacting cellular 
components [8, 9]. Uncovering this interaction network has implications regarding the 
topology of biological interactions and will redefine how we look at protein function, 
evolution, and disease. 

In discussing robustness and evolvability in living systems[10], Andreas Wagener 
has made the argument that evolution has left behind a tangle of prior, less efficient 
enzyme interactions in modern cells that act together with the more evolved enzymes. 
Understanding phenotypes and robustness to mutations and aberrant environmental 
conditions must take into account the remnants of these archaic interactions. He expects 
that it will be the case, unfortunately, that the increase in knowledge of the details on how 
cells work will coincide with increasingly opaque models – we will not be able to 
understandable what we know!1 

With that warning in mind, we recognize the need to collect the required data and 
deal with the complexity in new and novel ways, including one that we propose to call 
the biological phase space. We will discuss this concept later together with various 
mathematical techniques for dimensionality reduction that can describe the interplay of 
fundamental biomolecules within within that phase space. However, we will initially 
examine the problem with, perhaps, more familiar terminologies.

Network Topology

The topology of the regulatory network of biomolecules is relevant to 
investigations into network stability, dynamics and function, and approaches to 
reengineer biological processes [11, 12]. For example, the possibility that biological 
networks are scale-free could account for robustness in the face of mutation and 
environmental stress due to their resistance to random failure [12-16]. Proteins having 
many interactions in signaling pathways that have become deregulated in a cancer might 
represent more successful targets for therapeutics [12, 17, 18] when compared to 
heterogeneous targets identified from expression profiling. Additionally, there is debate 
as to whether highly-connected proteins are essential to survival [3, 14]. 

There is increasing evidence that a given biological function should not be 
assigned to a single protein, but rather that it emerges from the interaction of many 
components forming distinct functional modules [8, 9, 19-23]. For example, analysis of 
gene expression and protein interaction data for early embryogenesis in Caenorhabditis 
elegans revealed distinct groups of highly interconnected proteins with few or no links 
between them [24]. Analysis of interaction networks to isolate the densely connected 
subgraphs can identify distinct biological modules [25] and can suggest how the 
functions of these modules are regulated within the network.

1 Personal communication between Andreas Wagner and George Davidson, in discussing his book, 
Robustness and Evolvability during the summer of 2006 at the University of New Mexico.

9



Evolution

Data on the biomolecular interaction network will allow for an understanding of 
evolution not only in terms of how a given mutation influences an isolated activity, but 
how the overall network is influenced [26-28]. For example, why are some cellular 
components conserved across species while others evolve rapidly [5, 29-31]? Analysis of 
protein interaction data has suggested that the evolutionary rate of a protein is not 
determined solely by its essentiality and individual fitness, but by its level of interaction 
with other proteins [32], the very topological motifs describing these interactions [31], 
and even preadaptation for activation by signals that will facilitate future interactions that 
have not yet evolved[33]. Additionally, analysis of several interacting protein pairs has 
revealed that they co-evolve [34, 35]. 

Genetic analysis has revealed that Caenorhabditis elegans and humans have a 
similar number of genes. This observation, together with the similarity between the 
sequences of human and mouse genes almost certainly suggests that species differences 
might not be due to individual functions of the component genes, but the complex 
interactions between them [36]. This broader interpretation of interacting genes may 
explain the surprising evidence that protein-protein interactions are not well-conserved 
across species [3, 37]; the story is in the complexity of many interactions, not in the 
specific pairwise interactions. 

Uncovering the role of protein interaction networks in evolutionary processes will 
aid in our understanding of how perturbations due to disease, gene therapy, or metabolic 
engineering influence biomolecular processes as a whole. High throughput methods 
including expression arrays and whole genome sequences have demonstrated that 
preserved functional modules can be detected with clever algorithms and large 
databases[38-40]. Even greater insights should be expected when we are able to survey a 
large fraction of the proteome and are able to identify proteins with preserved collocation 
profiles across multiple tissues and species. 

Very practically, the evolutionary requirement for preserving functional modules 
and their topologic features suggests an important criterion for the identification of drug 
targets in viral and bacterial pathogens prone to drug resistance. This approach might also 
be used to identify “linchpins” in protein networks describing oncogenic pathways [4].

Protein Function

At least 40% of human genes lack any functional annotation [41] and the amount 
of missing information due to the multiple roles of proteins is unknown. Large scale 
analysis of protein interaction networks is advantageous in that it allows for an unbiased 
inspection of protein function [25]. That is, investigation of a protein’s role within a 
specific biological context can give rise to misleading or incomplete information when 
viewed without regard to the “big picture”. 

As an example where clues emerge from the big picture that otherwise be difficult 
to see with a tighter focus, consider the finding that proteins with similar functions are 
more interconnected by direct protein interactions than expected by chance [24] and that 
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proteins interacting with those involved in inherited disease are likely to cause similar 
disorders [3]. Interestingly, it has been shown that two proteins that have many 
interaction partners in common are more likely to be related biologically [42, 43]. 
Methods for identification of function for unknown proteins or protein complexes have 
been described based on their interactions in biomolecular networks [44-48] and such 
approaches have been utilized to identify functions for uncharacterized proteins involved 
in DNA repair and human cancer [49, 50]. 

Together with genomics and proteomics data, chromosome organization, protein-
interaction networks and protein localization knowledge can be used to identify the 
function of unknown proteins, their role in molecular machines, and the regulation of 
these machines through network interactions. Additionally, identification of protein 
function within the biomolecular interaction network can shed new light on the 
mechanisms of drug toxicity; that is, toxicity might result not only from non-specific 
interactions with target proteins, but from our ignorance of how perturbations from drug 
action influence the network as a whole. In general, it is becoming clear that simple 
annotations of protein function, while intuitive to the biochemist and molecular biologist, 
are insufficient for describing the complicated roles of proteins in molecular networks. 
Advancing computational algorithms for querying the true effect of proteins on biological 
observables seems necessary for improving the success of future endeavors.

Disease

The value of a deep understanding of interactions, especially at a systems-level, is 
perhaps nowhere more obvious than with respect to diseases. In a recent study by Marc 
Vidal and colleagues, ~10% of the possible protein-interactions in the human genome 
were analyzed with yeast two-hybrid assays [25]. Indexing with the Online Mendelian 
Inheritance in Man database revealed 424 interacting pairs associated with human 
disease. Approximately, 77% of these interactions appeared to be new based on literature 
searches. With broader coverage of the human interactome, we can expect a great deal of 
medically valuable, new information. Additionally, by simultaneously investigating viral 
proteomes interacting with host proteomes during early infection, it is reasonable to 
anticipate the discovery of totally unexpected new targets for viral pathogens.

Interestingly, analysis of proteins mutated in inherited disorders has shown that 
they are likely to interact with proteins causing similar disorders, suggesting the existence 
of disease subnetworks[3]. Clarification of the nature of these disease networks may offer 
a novel method for identification of new disease targets. In addition to identifying new 
individual targets for disease, uncovering the protein interactions networks involved in 
the deregulation of diseases such as cancer can offer deeper biological insight into the 
development of therapeutics. 

In an analogy given by Daniel Rhodes [4], traditional approaches for identifying 
new cancer targets are “akin to asking what makes an airplane different from an 
automobile, taking both apart, making a list of differences in the parts, and then focusing 
on a single part”. In contrast, systems-level approaches offer the potential for novel 
treatments to address the molecular heterogeneity and could provide needed insight into 
the difficulties in extrapolating from mouse models to human therapeutics. Here, the 
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systems approach idea is to simplify cancer signatures into coordinately regulated 
processes, transforming expression profiles into multidimensional interaction networks 
[4]. Such approaches can reveal common therapeutic targets for oncogenic pathways that 
might be missed due to the myriad of genes identified from expression profiling in a 
single pathway. 

Limitations of Current Approaches

Aren’t we already making progress? Is there really a need for a mid-course 
correction? Well, the answer is ‘yes’ to both questions. Large scale screens have been 
conducted, but they are not, yet, large enough. They are still so incomplete that 
conclusions drawn from the available samples are subject to distortions[11]. Further, cells 
are dynamical systems and the current high throughput methods hardly yield useful 
kinetics. A mid-course correction to our techniques and scientific goals could allow us to 
address the problems discussed below, and might yield the data required for useful cell 
models and simulations.

Various experimental approaches have been developed for identification of 
protein interactions including yeast two-hybrid assays, mass spectrometry of isolated 
protein complexes, protein chips, and hybrid approaches. Large-scale yeast two-hybrid 
screens have been performed for Helicobacter pylori [51], Saccharomyces cerevisiae [52, 
53], Drosophila melanogaster [54], Caenorhabditis elegans [43], and humans [25, 55]. 
Interactome maps are currently available in databases containing interactions from 
literature curation, high-throughput experimental assays, and cross-species predictions 
based on “interologs”. These databases include the Human Protein Reference Database 
[56], Biomolecular Interaction Network Database [57], Database of Interacting Proteins 
[58], Munich Information Center for Protein Sequences [59], Molecular Interactions 
Database [60], and IntAct [61]. 

Despite these efforts, current interactome maps have sampled only a small 
fraction of true interactions [6, 43, 54] and the overlap between interaction pairs obtained 
from distinct approaches is frighteningly low [41]. These deficiencies have important 
implications for the global analysis of biological networks due to the distorting impact 
that sampling can have on network topology [11]. For example, the scale-free topologies 
of partial networks should not imply a scale-free topology for the entire network [62]. In 
addition to missing data, the quality of existing data requires consideration. 
Reproducibility rates from yeast two-hybrid have been reported at ~55% for human 
interactome [25] and false positive rates have been reported to be ~50% [63]. False 
negative rates have been estimated as high as 85% for yeast two-hybrid and 50% for 
coaffinity purification with mass spectroscopy [63, 64]. Clearly, there is an outstanding 
need for alternative high-throughput approaches and additional data on protein binary 
interactions [7].

The limitations of yeast two-hybrid and affinity purification approaches have led 
some researchers to restrict the definition of the interactome to the “complete collection 
of binary protein-protein interactions detectable in one or more exogenous assay”, 
without the consideration of the dynamic or functional properties of these interactions 
[25]. However, it is important to realize that the cell is not a well-mixed isotropic 
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solution. The effects of protein subcellular localization, cell trafficking and nuclear 
shuttling, posttranslational modification and splice variants, and the influence of 
molecular crowding on thermodynamics are likely to have a dramatic influence on 
biomolecular interaction networks. The futility of model parameterizations based on  
mass action kinetics, in light of current experimental approaches, suggests alternatives 
are required. Ignoring the context dependence of protein interactions can result in 
misleading information for interactions that do not occur in vivo or within a specific cell 
line [4]. Additionally, it cannot be determined from binary protein interaction data alone 
whether proteins interact with their partners simultaneously or at different times and 
locations. Biological processes may occur differently depending on the organism, the 
organ, the tissue, the cell, or the sub-cellular compartment.

Clearly, the development of computational algorithms to handle the large 
quantities of data involved in dynamic, biomolecular networks will play a central role in 
future advances. Approaches will be needed to assess the confidence in high-throughput 
data from multiple sources, utilize information on protein interactions for problems in 
molecular recognition, determine protein functions, identify drug targets, and visualize 
information. Perhaps most importantly, predictive methods will need to be developed to 
facilitate successful bioengineering and drug development.

A Path Forward

Ultimately, the dynamics of the human interactome network will need to be 
uncovered in order to elucidate where and when interactions take place and how they are 
regulated [21, 25]. The importance of network remodeling in space and time was recently 
shown in the transforming growth factor-β pathway [65], where spatiotemporal analysis 
revealed considerable partner switching in protein interactions and the loss of numerous 
interactions upon signaling in exchange for interactions in Smad complexes. New 
approaches are needed in order to understand how protein interactions are organized at 
the scale of the whole cell, how information, energy and molecules flow through 
biological networks, and how global and local properties of complex molecular networks 
influence biological properties and lead to human disease.

Building on the Interactome

We have illustrated in Figure 1 an approach for investigating the biomolecular 
networks responsible for life and examples of technologies that these investigations 
would enable or enhance. The interactome is the starting point. If two proteins are present 
together, will they interact? Expanding on this information can help us to address 
important problems regarding molecular recognition. The ability to inhibit protein 
interactions or, alternatively, to create new interactions relies on our ability to predict 
how proteins will interact with the use of bioinformatics and biophysics approaches; 
these approaches require a detailed understanding of existing interactions. Additionally, 
the information regarding all of the interactions of a protein is necessary to perform truly 
rational design of novel proteins.
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Figure 1. Illustration of the investigation into biomolecular networks at different levels and the 
technologies that would be enabled or enhanced. As a whole, this data facilitates a description of a 
biological phase space where the state of a biomolecular network maps to biological observables.

Automating High Throughput Collocalization Measurements

While information on binary in vitro-protein interactions is useful, understanding 
these interactions in the context of the cell cannot be achieved based only on this 
information. These interactions will depend on expression and localization within the cell 
and these two will depend on the type of cell and its internal information state. Therefore, 
a true understanding of biomolecular network topology will require the development of 
new high-throughput technologies for observing protein interaction networks as they 
occur in different states of a cell and within different types of cells. Obtaining this 
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information will give us insight into the mechanisms of life and disease along with a 
schematic for rational bioengineering. 

Filling In the Interactome

Several recent breakthroughs are, indeed, enabling new approaches that can 
identify collocated proteins within their cellular compartments. A particularly interesting 
example is the work in Germany[66] where a laboratory with sixteen automated 
microscopes has been developed as a step along the pathway toward high throughput 
collocalization measurements. In their approach, robots implement serial fluorescent 
immuno-staining using flow cells on the microscope stages. They have demonstrated the 
ability to sequentially stain and image a large number of different epitopes within a tissue 
sample (or within individual cells under higher magnifications). 

Figure 2 depicts how they measure the locations of several epitopes in a sequence 
and then combine these measurements to produce collocation maps. They reported results 
using about 100 different antibodies, and showed that various permutations of staining 
sequences gave similar results. Importantly, they are working to extend these methods to 
make measurements with a thousand different antibodies.

Figure 2 A depiction of the process implementing automated immuno-staining, followed by 
imaging and photo bleaching prior to the next round of staining and imaging. Note how images 
of individual epitopes can be combined with false coloring to render protein locations within the 
tissues, Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology [66] 
copyright 2006.

Optically based, high throughput proteomics systems with automated liquid 
sampling for the chemistries can be seen as just a machine tool for gathering the 
locations of hundreds if not thousands of proteins localized to their cellular organelles. 
Seen this way, it is clear how to scale the process in the same way that massively parallel 
super computers are made: combine and replicate a single common building block in a 
massively parallel way. For supercomputers the basic block is a simple, commercial 
computer, but for proteomics it would be something like that shown in. Figure 3. Scaling 
to a production facility with hundreds of these basic building blocks is very much like 
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any other manufacturing environment with many replicas of the basic machine tools. 
Like other manufacturing facilities, one must be concerned with the materials coming 
into the plant, the products being shipped, and the wastes being generated. With respect 
to that production stream, micromachined flow cells should give greater experimental 
control while minimizing the required chemicals and resulting waste. 

Figure 3 Automated microscopes with liquid sampling capability and flow cell stages 
capture the raw data, which must be further processed to identify collocations.

Micro-scale Reaction Vessels

The application of micromachined reaction vessels and microscopy is already 
yielding important new experimental methods, including single cell studies. In addition to 
methods for manipulating and imaging live cells, there are new opportunities for working 
with fixed cells. Consider, for example, a time course experiment after exposing groups 
to a treatment. The exposed cells could be sorted and moved into channels where they are 
rapidly fixed at the specified time points. Once fixed, the automated methods discussed 
above could be used to identify proteins collocating under the experimental conditions. 
By conducting as much of the experiment as possible within the micromachined 
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environment, human errors and problems with reproducibility should be greatly 
minimized.

Antibody Libraries

Of course one cannot use immuno-fluorescent staining without having the 
required antibodies. While many antibodies are available, the vast majority of proteins 
produced by cells from the species of most interest have not been isolated and used to 
produce antibodies. Further, the production of antibodies for proteins that are highly 
conserved between the target species and the animals used in antibody production 
remains problematic because they will not recognize the target species’ proteins as 
different from their own, and no immune response will be invoked. 

Certainly, phage display methods offer the promise of an alternative to traditional 
animal grown antibodies and could well play a critical role in high throughput optical 
proteomic approaches.  In an alternate approach, David Peabody’s work with MS2 
bacteriophage[67] has led to another possible path toward the production of the required 
antibodies. MS2 phage can be induced to display antigenic peptides on their surface[68, 
69]. These coat proteins can be grown with cell-free methods and will self assemble. 
Further, the dense, repetitive presentation of the polypeptides as part of the coat protein 
produces extremely strong immune responses, even breaking self immunity[70]. His 
methods should allow for the production of antibodies, even for those highly conserved 
proteins. It is expected that either phage-display or MS2 coat proteins can be developed 
to supply the required antibodies for very large fractions of the required proteomes and 
that these methods, together with the automated optical microscopes, can be used to 
construct interactomes of sufficient quality and coverage necessary for modeling.

Improving Optical Resolution of Protein Collocalizations

It should be noted that these high throughput optical proteomic methods remain 
subject to the diffraction limited resolution of traditional microscopy; light microscopy 
can only localize proteins to regions of about 200 nm. Finer resolution has traditionally 
required electron microscopy (EM) and immunostaining with attached gold beads, a 
relatively slow and expensive process subject to many experimental difficulties. 
However, very recent breakthroughs in single molecule imaging methods, combined with 
extensive computing, suggest a way to achieve resolution comparable to that of EM 
micrographs [71-73]. These methods are achieving resolutions of a few tens of 
nanometers, and should achieve even better resolutions in the future. Importantly, readily 
available fluorescent stains (Cy3/Cy5) have been shown to have the required optical 
switching properties[74, 75]; so, new exotic chemistries will not be required to collect the 
images. However, these images do require a great deal of processing to determine the 
protein locations, and further processing is needed to extract hypothetical networks from 
the collocation data. 

Computing and New Machine Architectures

The combination of supercomputing with hundreds, or even thousands of 
automated microscopes using these single molecule imaging methods should enable the 
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identification of collocated proteins with resolutions sufficient to know if they are on the 
same side of an organelle membrane (resolutions better than 10 nm will be required). At 
these resolutions the confidence that two proteins are, or are not interacting should be 
greatly improved. However, the volume of data produced will be enormous, and a new 
generation of bioinformatics databases will be required. Fortunately, two new computer 
architectures suggest that it will be possible to deal efficiently with these data. 

Massively parallel database machines like the Netezza Performance Server Model 
10100 show that it will be possible to work with extremely large datasets (hundreds of 
terabytes, or more) at interactive rates. For instance, a recent test at the NIH/NCI 
Advanced Biomedical Computing Center showed speedups ranging from an order of 
magnitude up to twenty thousand times faster for a broad range of queries typical of their 
in-house work2. However, it is not sufficient to be able to look through large databases of 
reduced data; the ability to automatically find suggestive motifs will be critical. For 
example, identifying sets of a few molecules that generally seem to be collocated in and 
around a membrane until stimulated may be suggestive of a scaffolding for the initial 
stages of a signaling cascade. It will be important to be able to search for similar motifs 
under many different experimental conditions and in different species to find other such 
interactions or variants of the known interactions.

These motifs can be readily modeled as abstract graphs with nodes representing 
the proteins and arcs between nodes representing the interactions. Further, the nodes and 
arcs can have associated annotations describing the protein locations (which organelles, 
membrane bound, free in the cytosol, etc.) and the experimental conditions under which 
the interaction is observed (say, for example, during S-phase of the cell cycle after 
exposure to a particular toxin). Graph search algorithms are often extremely difficult, 
especially when the semantics of the graphs carry restrictions and temporal limitations as 
annotations. The resulting memory usage patterns greatly limit the value of caches and 
the use of multiple cores within high performance processors; essentially limiting the 
processor to an execution speed matching the slowest memory access rate. However, 
recent research at Sandia National Laboratories and elsewhere has had success using a 
new class of super computer that deals with the inherent distributed nature of graph data 
structures throughout the available memory[76]. 

Multithreaded dataflow machines are designed to deal with the inherent latency 
by maintaining many parallel threads of computation. Although every thread must wait 
for access to new data, on average one or more of the threads will have completed the 
required data access at any given point so that the processing unit never completely stalls. 
Tests on the Cray XMT and its predecessor have demonstrated large speedups over the 
performance possible with traditional supercomputers. These architectures and graph 
search algorithms are likely to play a large role in reducing the raw data from the high 
throughput optical proteomics facilities. The goal of such data fusion must be the 
automatic creation of interaction hypotheses and the inferences required to estimate 
network dynamics.

Together, automated microscopy, improved microscale reaction vessels, single 
molecule imaging methods, and new computing technologies are expected to be 

2 Personal communication from Todd Scofield, June 2007.
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transformative for biology. A production capability should yield a new kind of data that 
is unprecedented in scale, depth, and coverage of biological conditions. These data will 
enable whole cell and tissue level understanding of systems biology that will elucidate 
information and energy flow through biological networks and may enable computational 
modeling of the global and local properties of complex molecular networks. This 
modeling at high levels of detail can, in turn, move us toward predictive cell science and 
enable the engineering of desired biological properties and new therapies for human 
disease.

Having suggested that we are on the threshold of having all of the elements 
required to measure and analyze in vivo protein interactions, and having seen that other 
research threads are developing the new tools required to search through and analyze the 
raw data from those methods, we must now consider the tools required for data analysis, 
modeling, and simulation. 

Data Fusion and Uncertainty Quantification

There is concern with any high-throughput experimental approach about the 
quality of the data. With yeast two-hybrid approaches, this concern is at the forefront due 
to high rates of false positives and false negatives. Therefore, methods for validating data, 
assessing self-consistency, and metrics for confidence must be applied in concert with 
high-throughput approaches. For binary “interactome-style” data, numerous methods 
have already appeared in the literature. For example, protein interactions detected in 
multiple assays are more likely to be true positives, especially if the assays utilize distinct 
methodological techniques [7, 63, 77, 78]. Methods integrating data from 
genomics/transcriptomics (coexpression), proteomics (collocalization), and interactomics 
(binary interaction data) can be integrated to provide high confidence data [49, 79-86]. 
Confidence scoring systems have been developed that calculate the likelihood of an 
interaction using various parameters including attributes of the proteins and the specific 
assays, whether the interaction was detected by other technologies or screens, and 
network topology [42, 54, 87-90]. For example, genes with similar expression profiles are 
more likely to encode interacting proteins [24]. In general, statistical models must be 
integrated with existing knowledge in order to improve confidence predictions. For 
example, there is evidence for early expression and later use widely throughout the cell 
cycle in yeast [91] and evidence for sequestration of mRNAs for rapid release under 
signal triggered conditions [92], both of which  could confound statistical analyses.

These approaches for data-fusion extend beyond applications for assessing 
confidence and validating data. For example, many observations have been made that 
allow for an integrated approach for determining the function of uncharacterized proteins.
Genes with similar expression profiles are more likely to show enriched phenotype 
correlation and genes with phenotypic similarity are more likely to encode proteins that 
interact with each other [24, 91]. Additionally, bacterial genomes are known to be 
organized into regions that tend to code for proteins with similar functions and 
correlation is enriched with organizations that are conserved across different species [93]. 
The adjacency of genes in various bacterial genomes has been used to predict functional 
relationships between the corresponding proteins [94, 95]. 
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These observations, together with spatiotemporal analysis of protein interactions 
can provide high confidence assessments of the complicated roles of proteins in 
molecular biology and biochemistry. Ultimately, methods for data fusion and uncertainty 
quantification (see for example,[96]) should play an important role in unraveling the 
intricacies of biomolecular interaction networks and provide a systems-level integration 
with the large amounts of data generated from genomics, proteomics, and metabolomics 
approaches.

Protein Interaction Domains and Molecular Recognition

Understanding molecular recognition, how biomolecules interact, is critical for 
methods that attempt to inhibit interactions or create new ones, for example in a new 
cancer therapy. While both physics-based [97] and informatics-based [98-102] 
approaches have been developed for identifying protein interactions, both approaches 
require data for empirical training and, currently, each suffers from low general 
accuracies. In the former, information on protein interactions is required for 
parameterizing force-fields capable of distinguishing low energy protein-protein 
configurations from the high energy ones that are unlikely to result in stable interactions. 
In the latter, information on observed protein interactions is used to train models that 
predict interactions and the interaction domains on the proteins involved. 

Expanding the database of protein-protein interactions with increased sampling in 
different cell types, cell processes, tissues, and species is necessary for improving the 
accuracy of methods that attempt to predict or modulate protein interactions. This 
information in turn is necessary for problems in bioengineering and medicine. As we 
accumulate and understand these data, we will have the ability to engineer proteins with 
enhanced catalytic functions while maintaining their roles in biomolecular networks. 
Perhaps, we will even be able to engineer proteins leading to new biomolecular networks 
with desired properties or synthesize inhibitors to protein interactions involved in 
oncogenic and disease pathways.

Network Topology, Graph Theory, Clustering, and Visualization

Graph theoretic approaches are useful for interpreting the large amount of data 
generated by high-throughput approaches. They can identify the topology of 
biomolecular networks, sub-graphs representing functionally organized groups of 
proteins and their roles as molecular machines, drug targets, and targets for 
bioengineering. Methods have already been developed for identifying densely connected 
subgraphs [103], functionally enriched complexes [104], for unsupervised clustering and 
visualization [105], and for dividing biomolecular networks into modules [21, 87, 106-
109]. While these methods create a foundation for analyzing biomolecular networks, they 
have all focused on binary interaction data. Many authors have used these approaches for 
identifying global properties of biomolecular networks, however, these are of nebulous 
value because they neglect interactions in a context relevant to the cell. Future methods 
will need to incorporate data on when, where, and why interactions occur in order to be 
of value.
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In addition to data analysis, methods will be needed to provide an interface to the 
experimentalist. One might imagine an interface where the user enters a protein identifier 
and obtains a coordinated story about the protein and its cellular roles. This story might 
be synthesized on-the-fly with text, figures, and even video describing dynamic changes. 
Such a story would include, information on the molecules interacting with the specified 
protein, metabolic functions, locations within the cell, roles in various cellular processes 
and tissues, domains responsible for various function, evolutionary changes that have 
occurred and how these have affected the biological system as whole, and pictures of the 
protein in overall biomolecular networks.

Recasting the Problem and Biological Phase Space 

Obtaining information on known biomolecular networks is one thing; using this 
information for bioengineering and medicine is another. Although the value of 
knowledge on biomolecular networks is not debated, as far as its role in providing 
starting points for experimental endeavors, predictions of the true effects of perturbations 
to the network are required for rational design. It is this ability that will facilitate the 
transition from knowledge to unhindered technological breakthroughs in the many 
scientific disciplines spanned by the biosciences and bioengineering. The complexity 
involved in predictive methods is daunting, however. Certainly, an ab initio approach 
utilizing quantum mechanics to simulate the biomolecular network will remain beyond 
our reach. We will need, instead, simpler models that can be realized with the available 
computing resources. However, higher level formulations utilizing mass-balance kinetics 
do tradeoff  computational complexity against the requirement for extensive experimental 
data. It therefore seems intractable to describe biological observables with a phase space 
parameterized by molecular concentrations and stoichiometric rules for molecular 
interactions and chemical transitions.

One alternative is to recast the problem and to adopt a new definition of biological 
phase space in terms of data that can be obtained. For example, consider a phase space 
where biological observables are described in terms of protein sequence data from 
genomics, expression levels from transcriptomics, and data on biomolecular interaction 
networks as obtained in different cellular processes, tissues, and species. Although the 
dimensionality of the space is still very high, there is a kind of order within which lies the 
very motivation for this work – biomolecules are all connected in an intricate network. 
Life does not exist as a uniform sampling in this phase space, but as a manifold with 
lower dimensionality. 

We can relate this description back to the failure of rational drug design that was 
presented earlier in this report. In that example, we posited a protein and its function, 
which was assumed to be involved in a disease. That function might only be a single 
dimension in the biological phase space. When we limit ourselves to thinking only along 
this single dimension, we are surprised to find that the drug and its single inhibitory 
function ultimately fails to become a useful therapy. The odds of developing a successful 
drug from identification of targets to clinical trials is incredibly small and has left many 
serious diseases such as diabetes and leukemia with few treatment options despite the 
huge resources given to scientists working in these fields. We suggest that identifying 
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more inclusive manifolds can shed new light on our endeavors, and will lead to more 
successes in health care and the engineering of biologically important molecules.

Recently, novel approaches for identifying non-linear manifolds in high 
dimensional spaces have appeared in the literature [110-112]. These approaches have 
been applied to problems such as protein folding in traditional phase spaces and are 
applicable to problems in the biological domain. Dimensionality reduction can be utilized 
to tie together samples from different cell types and different species into a manifold 
giving equations that relate intricate networks of biomolecules to biological observables. 

Returning to the drug design just discussed, these methods may allow a broader, 
but still practical design methodology. Rather than blindly attacking a protein in drug 
design or bioengineering, we can obtain information on how inhibiting a protein will 
affect the system as a whole based on the natural changes that have occurred through 
evolution and are present in different cell types. With this intervention, we might invoke 
a series of treatments as preparation for the definitive drug. The initial manipulations 
would be used to move the cells and tissues toward regions in their phase space where 
they would be more likely to be successfully treated. While analysis of the large amounts 
of data necessary to develop this approach does present challenges, advances in high 
performance computing, along with the ability to parallelize current algorithms in terms 
of dense matrix decompositions and linear algebra solvers, can provide a solution. In 
addition to predicting the effects of perturbations to biomolecular networks, these 
approaches offer the potential for uncovering high-level rules that can facilitate 
spatiotemporal modeling of the dynamics of biomolecules composing entire cells on 
modern supercomputers.

Summary

It has become increasingly apparent that biomolecules act in a complicated 
temporal and spatial network rather than in isolation. Understanding these inter-related 
components is critical for future endeavors in bioengineering and medicine. Researchers 
have made the first steps in this direction with the development of high-throughput 
methods for identifying protein-protein interactions and pictures of static interaction 
networks. In theory, mass balance kinetic models might utilize this information for 
simulating how network perturbations influence biological observables. In practice, that 
approach is unattainable due to the overwhelming quantity of experimental data required, 
disparity in experimental conditions used to make measurements, the unknown effects of 
missing and uncertain data on experimental results, and an incomplete understanding of 
the effects of cell trafficking and morphology on kinetic models. This limitation 
precludes an accurate analysis of how these protein interactions regulate cellular 
processes; which is, of course, necessary if we are to understand how these networks can 
be modified to achieve new objectives. Therefore, future efforts must focus on protein 
interactions in a context relevant to cellular processes with high-throughput identification 
of the dynamics of protein interactions within the cell. This approach, abstracted from 
traditional chemical dynamics, could lead to predictive models and to accurate 
simulations that will augment our intuition and understanding of how the biomolecular 
networks regulate cellular processes and how they, ultimately, perform tissue specific 
functions.
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Methods for assembling the data required for these new approaches are rapidly 
developing. It is important that the bioinformatics and cell modeling communities not 
wait, but begin immediately to plan how they can best use these new data.
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